
LAPLACE’S EQUATION IN SPHERICAL COORDINATES 
 

With Applications to Electrodynamics 
 

 
We have seen that Laplace’s equation is one of the most significant equations in physics. 
It is the solution to problems in a wide variety of fields including thermodynamics and 
electrodynamics.  In your careers as physics students and scientists, you will encounter 
this equation in a variety of contexts.   
 
It is important to know how to solve Laplace’s equation in various coordinate systems.  
The coordinate systems you will encounter most frequently are Cartesian, cylindrical and 
spherical polar.  We investigated Laplace’s equation in Cartesian coordinates in class and 
just began investigating its solution in spherical coordinates.  Let’s expand that 
discussion here. 
 
We begin with Laplace’s equation: 
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We can write the Laplacian in spherical coordinates as: 
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where θ is the polar angle measured down from the north pole, and φ is the azimuthal 
angle, analogous to longitude in earth measuring coordinates.  (In terms of earth 
measuring coordinates, the polar angle is 90 minus the latitude, often termed the co-
latitude.) 
 
To make our initial calculations a little simpler, let’s assume azimuthal symmetry; that 
means that our parameter V does not vary in the φ direction.  In other words, 0/ =∂∂ φV , 
so we can write the Laplacian in (2) a bit more simply.  Assuming azimuthal symmetry, 
eq. (2) becomes: 
 

)(sin
sin
1)(1

2
2

2
2

θ
θ

θθ ∂
∂

∂
∂

+
∂
∂

∂
∂

=∇
V

rr
Vr

rr
V      (3) 

 
This is the form of Laplace’s equation we have to solve if we want to find the electric 
potential in spherical coordinates.  First, let’s apply the method of separable variables to 
this equation to obtain a general solution of Laplace’s equation, and then we will use our 
general solution to solve a few different problems. 
 
To solve Laplace’s equation in spherical coordinates, we write: 
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First Step: The Trial Solution 
 
The first step in solving partial differential equations using separable variables is to 
assume a solution of the form: 
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where R(r) is a function only of r, and Θ(θ) is a function only of θ.  This means that we 
can set: 
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Substituting the relationships in (6) into (4) produces: 
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If we multiply each term in (7) by r2 and then divide each term by V = R(r) Θ(θ), we 
obtain: 
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Notice that the derivates in (8) are no longer partial derivatives.  This is because the 
method of separable variables has produced two terms; one is solely a function of r and 
the other is solely a function of θ.   
 
Second Step: Separating Variables 
 
Equation (8) allows us to separate Laplace’s equation into two separate ordinary 
differential equations; one being a function of r and the other a function of θ.  As we have 
discussed in class, we realize that each term on the right hand side of (8) is equal to a 
constant.  This means we can separate (8) into: 
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We now have two different ordinary differential equations which we will solve.  We 
realize that the product of solutions will allow us to use eq. (5) (along with appropriate 
boundary conditions) to determine the solution to Laplace’s equation.  You may wonder 
we we choose to write the separation constant as something as non-obvious as l(l+1).  



The reason is that we have read ahead in the script, and know that by writing the 
separation constant in this way we will produce a well known differential equation whose 
solution we already know.  Notice that separation constant is positive in one equation (the 
radial part) and negative in the other (the angular part); this is necessary so that the sum 
of equations is zero as required by Laplace’s equation. 
 
 The radial equation 
 
Let’s start by solving the radial equation of eq. (9). 
 
We multiply through by R(r) and expand the derivate to find: 
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This is a fairly simple example of a Frobenius (see 
http://www.luc.edu/faculty/dslavsk/courses/other/classnotes/frobeniusexample.pdf )differential 
equation.  This is also an example of an Euler (or Cauchy) differential equation.  See 
http://www.luc.edu/faculty/dslavsk/courses/other/classnotes/euler.pdf  for more details about solving 
Euler’s equation. 

Using either the method of Frobenius or methods of Euler’s equations, we can find the  
solution to equation (10): 
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where A and B are constants which will be determined once we apply specific boundary 
equations. 

 The angular equation 

We solve the angular portion of equation (9) by multiplying through by Θ(θ) and 
expanding the derivative to obtain: 

0)1(
sin
cos

2

2

=Θ++
Θ

+
Θ ll

d
d

d
d

θθ
θ

θ
     (12) 

This is actually a differential equation you are very familiar with, although perhaps not in 
this exact form.  Refer back to the solutions for the very first homework set of the 
semester, http://www.luc.edu/faculty/dslavsk/courses/phys301/homework/phys301hw1s.pdf  and review 
again the solutions to problems 4 and 5.  You will see that the equation you have derived 
in (12) is just the well known Legendre equation.  We know that the solutions to the 
Legendre equation are the Legendre polynomials, Pl (cos θ).  

Third Step: Constructing the complete solution 

http://www.luc.edu/faculty/dslavsk/courses/other/classnotes/frobeniusexample.pdf
http://www.luc.edu/faculty/dslavsk/courses/other/classnotes/euler.pdf
http://www.luc.edu/faculty/dslavsk/courses/phys301/homework/phys301hw1s.pdf


Having separated Laplace’s equation into two ordinary differential equations, we can use 
the results above to substitute into eq. (5) to realize that the general solution to Laplace’s 
equation in spherical coordinates will be constructed of a sum of solutions of the form: 
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From our experience with Laplace’s equation in Cartesian coordinates, we know that the 
full solution will be constructed by taking a sum of solutions of the form of (13); in other 
words, our general solution to Laplace’s equation in spherical coordinates is: 
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Now, all we need are boundary conditions to determine the values of the coefficients Al 
and BBl.   

Applying Boundary Conditions 

 First Example (Boas pp. 647-649) 

Let’s see how we can use (14) as the starting point to determine a solution to Laplace’s 
equation with specific boundary conditions.  For this purpose, let’s use the example in 
Boas pp. 647-649.  Without any loss of meaning, we can use talk about finding the 
potential inside a sphere rather than the temperature inside a sphere.  So, let’s assume 
there is a sphere of radius a, and the potential of the upper half of the sphere is kept at a 
constant +100, and the potential of the lower half of the sphere is held at 0.  How can we 
determine the potential at any point inside the sphere? 

First, let’s write the boundary conditions as: 
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Remember that the “north pole” of the sphere corresponds to θ =0, and θ = π/2 in the 
equatorial plane.  Now, let’s look a bit more closely at (14).  We are asked to find the 
potential at any point inside the sphere.  This regime includes, of course, the point r=0, 
and we can look at (14) and realize that the solution diverges at r=0 unless BBl =0.  
Applying the necessity for a meaningful physical solution to this problem allows us to set 
all coefficients Bl B to zero, so that (14) simplifies to: 
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Now, we use the boundary condition for the surface of the sphere.  When r = a, we know 
that V = 100 in the upper half sphere and V = 0 in the lower half sphere.  This means we 
can write (15) as: 
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The expression in (16) should look familiar to us:  we are seeking to write a function (in 
this case the function equals the constant 100) in terms of an infinite series.  We have 
seen how to do this using both Fourier series and Legendre Polynomials.  We know that 
our function can be expanded in a series if and only if we can expand that function in 
terms of a complete set of orthogonal functions.  Fourier series are possible because sin 
and cos represent a complete set of orthogonal functions on (-π,  π); expansion in terms of 
Legendre polynomials is possible since we have learned that Legendre polynomials are a 
complete set of orthogonal functions on (-1, 1). 

Thus, we can expand any function f(x) on (-1, 1) as: 
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where the coefficients, cl are determined by: 
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We can see that equation (17) applies to eq. (16) with f(x) = 100, and cl = Al al, or  
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All we have to do now is determine the values of the coefficients cl from (18), substitute 
these values into (19) and then use those values of Al in (15) to determine the complete 
solution to the potential inside the sphere. 

We can determine several of the coefficients cl easily by direct integration; in fact this is 
done in Boas on p. 581.  Using these Legendre coefficients with f(x) = 100 and 
substituting into (16) we obtain an explicit expansion of our solution for V(r, θ): 
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and you can expand the various Legendre polynomials explicitly in terms of cosθ if you 
wish, but there is really no need to go beyond the expression as it is written in (20). 

 



 Second Example 

Consider a sphere of radius a that has a potential on its surface given by: 

θθ 2
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and we are asked to find the potential at points exterior to the sphere.  We go back to eq. 
(14) and begin to apply boundary conditions.  First, we realize that Al must go to zero 
since r can get very large, allowing us to simplify (14) as: 
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Now, we apply the boundary condition (21) and obtain: 

∑
∞

=

+− ==
0

2
0

)1( cos)(cos),(
l

l
l

l VPaBaV θθθ      (23) 

This is just another form of eq. (17).  Here, the function f(x) is V0cos2 θ, and the 
coefficient BBl a  stands in the place of c-(l+1)

l.  So, our task now is very familiar: compute 
the coefficients cl using (18), use these to determine the values of BlB , and substitute these 
values of BBl into (22) to find our complete solution.   

Let’s begin by finding the coefficients cl.  We can set x=cos θ; since θ varies from 0 to π¸ 
x then varies from -1 to 1, which is very convenient in calculating Legendre coefficients 
since the Legendre polynomials are a complete, orthogonal set on (-1, 1). With this 
substitution, we will calculate our coefficients cl from: 
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The final integral on the right is pretty easy to do; Legendre polynomials are, well, 
polynomials, and multiplying them by x2 just produces another polynomial which is easy 
to integrate between these limits.  But let’s think a bit more and make our lives even 
easier.  We recall that Legendre polynomials are even functions for even values of l, and 
are odd functions for odd values of l.  This means that all cl for odd l vanish since the 
integrand in (24) becomes the product of an even function (x2) and an odd function (Pl(x) 
for an odd l).  This means the integrand in (24) is odd whenever l is odd, and the integral 
of an odd function between limits symmetric with respect to the origin vanishes. 

Let’s compute coefficients: 
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You will find that all higher index coefficients vanish; does it make sense that this 
function is expressible in terms of only P0(x) and P2(x)? 

There are only two terms which will contribute to the series expansion of V, namely the 
l=0 and l=2 terms.  We remember from before that we use our values of cl  to find the 
values of BBl that substitute back into (22); eq. (23) tells us that: 
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Using these values of BBl in our general solution (22) gives us the complete answer to this 
problem: 
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 Third Example 

Let’s say now that we want to find the potential outside a sphere of radius a whose 
surface is held at a potential given by )3cos(0 θV .  We know that since we are dealing 
with exterior points our solution will be of the form of eq. (22), and that we will have to 
find the coefficients BBl .  The process we follow is identical to the example immediately 
above, except now f(x) = )3cos(0 θV  rather than .  We saw in the example 
above how we could simplify our calculations by realizing we could set x = cos θ; we 
would like to express our current f(x) in terms of x=cos θ, but we will have to do a little 
trig and algebra manipulation to accomplish this. 

θ0 cosV 2

2 2

Let’s start by writing cos(3θ) = cos(2θ+θ).  We now expand this as: 
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where x= cos θ. 

Now it is a fairly straightforward task to find the necessary coefficients to solve our 
problem.  We follow the example of eq. (24), now with f(x) = V0(4x3 – 3x), and solve for 
cl: 
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These results tell us that: 
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and we use the form of (24) to write the final answer as: 
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